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Stress relaxation in coiled ribbons of 
Fe oNi oPl B  and Fe ,Ni gP,.B S  
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New York 14853, USA 

The stress relaxation at elevated temperatures in coiled ribbons of Fe-Ni base metallic 
glasses is calculated for both power law creep and Eyring activated flow. The results are 
compared with experimental data on the spring-back of coiled ribbons after various 
anneals. Good agreement is obtained for Eyring activated flow, but not for power law 
creep. Comparison with stress relaxation experiments on straight sections indicates that 
stress relaxation in coiled ribbons is largely due to transient creep. 

1. Introduct ion  
The tensile compliance of metallic glasses consists 
of three contributions: (a) an instantaneous elastic 
part, (b) a transient or anelastic part and (c) a 
steady state or plastic part [1 ]. The transient part 
is largely, but not completely recoverable. The 
non-recoverable fraction of the transient com- 
pliance is on the order of 5% or less [2], and is 
ascribed to the relaxation of the quenched glass 
towards a more stable structure [2]. This contri- 
bution therefore decreases with the number of 
test cycles on a given specimen [2]. 

The relative magnitude of the three contri- 
butions to the tensile compliance varies with tem- 
perature. At high temperatures ( T g >  T > T ~ -  

20 ~ C) the anelastic contribution becomes very 
large - about 200 times larger than the elastic 
contribution. In this narrow temperature range, 
metallic glasses behave therefore almost like glassy 
polymers. Sufficiently below Tg, the anelastic 
contribution is of the order of the instantaneous 
elastic contributions, or fractions thereof. 

According to [2] the nature of the anelastic 
element at low temperatures (Tg -- 110 < T < Tg -- 
210~ and low stresses is Maxwellian, but at 
stresses higher than about a quarter of the yield 
stress a more complex behaviour is observed [2]. 
Recently a more detailed analysis has shown that 
in Pd-Si  glasses the recoverable (i.e. majority) and 
non-recoverable (minority) part of the transient 

component can be modelled with a Maxwell ele- 
ment in series with a Voight element [3]. 

The steady state or plastic deformation is vis- 
cous only at high temperatures (T~ -- 30 < T < Tg) 
where it follows the Vogel-Fulcher equation. 
Below this range, the temperature dependence of 
the plastic flow is usually expressed by an 
Arrhenius expression with a temperature dependent 
activation energy. The activation energy decreases 
rapidly below T ~ -  30~ and reaches an approxi- 
mately constant value in the region where the vis- 
cosity is greater than about l 0  Is Nm -2 sec. In the 
region Tg-- 210 < T <  Tg -- 110 ~ C the measured 
activation energy for Pd-Si based metallic glasses 
is 0.5eV [2], and 0.1 to 1 eV in Ni -P  or Co-P  
based metallic glasses [4]. 

The stress dependence of the plastic defor- 
mation is small and can, within the experimental 
error, be satisfactorily described by both an 
Erying model and by a power law [2]. The Eyring 
model yields an activation volume v* of the order 
of an atomic volume ~2 [1, 2]. Alternatively, the 
power law description d = A o  n, fits the data with 
n = 1.6 in Pd base glasses [2] and 1 in Ni -P  [3]. 
For temperatures closer than about 10~ to Tg, 
the stress dependence increases rapidly and v* may 
reach 100~  [1]. 

Most of the reported mechanical data on amor- 
phous alloys pertain to Pd Si based metallic 
glasses which can be prepared more easily than the 
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Figure 1 Log~o of stress versus loglo of strain rate as 
measured in a tensile test stress relaxation experiment. 
Results are shown for four different initial load levels. 
Test temperature is 270~ The specimen was pre- 
annealed at 300 ~ C to stabilize the structure. 

N i - F e  based variety. In view of  this situation we 
studied the relaxation behaviour of  N i - F e  base 
metallic glasses in considerable detail [5]. This 
paper reports an analysis of  the transient defor- 
mation which, as we will show, dominates the 
stress relief in practical annealing situations such as 
is encountered in the annealing of  wound trans- 
former cores. 

2. E x p e r i m e n t a l  

Two types of experimental data are available for 
an analysis of  the stress relaxation behaviour of 
amorphous Fe4oNi4oP14B6 (Tradename Allied 
Metglas #2826).  These are stress relaxation data 
from tensile tests [5] and spring-back measure- 
ments on 2826 ribbons coiled into rings prior to 
anneal [6, 7] .  

A typical result of  a stress relaxation test under 
tension is shown in Fig. 1, which illustrates the 
relation between stress (vertical axis) and strain 
rate (horizontal axis) f o r  four different initial 
stress levels. It can be seen that the log10 o versus 
loglo i relation consists phenomenologically of  three 
parts, the borders between which are indicated by 
arrows in Fig. 1. Part 1 commences immediately 
after termination of  loading and is characterized 
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by an extreme sensitivity of  the strain rate to 
stress. At 270 ~ C, this part is completed in about 
60see. Part 2 is the transient or anelastic de- 
formation, which eventually merges into part 3, 
the steady state or plastic deformation. The 
transition between parts 2 and 3 is gradual and at 
270~ occurs around 5h,  give or take a factor 
of  2. Part 3, the steady state deformation, is very 
accurately described by a power law with a stress 
exponent of  about 4. A detailed investigation 
reveals that the stress exponent of  a well annealed 
sample (T~-,ne~a = 300 ~ C) tested repeatedly at 
270~ changes slightly with the number of  load 
cycles rising from about 3.7 after the first loading 
to about 4.3 after the 6th loading. These changes 
are too Small to be detected in Fig. 1 and are 
therefore shown separately in Fig. 2. 

As the temperature is lowered, the time to 
reach steady state deformation increases very 
rapidly so that for practical time intervals this 
section of  the log o versus log ~ curve soon becomes 
unobservable. 

Tests on ribbons coiled into rings prior to 
anneal are easily carried out and a number of  
investigators have used these tests as a qualitative 
means to check stress relief in wound ribbons. The 
most detailed measurements, by far, are those by 
Graham et al. [6],  whose measurements are 
reproduced in Figs. 3, 4 and 5. Their specimens 
were coiled into rings of  6.5 mm prior to anneal at 
various temperatures and times. After each anneal, 
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Figure 2 Stress exponent and pre-exponentiai factor as 
measured in repeated tensile test stress relaxation ex- 
periments on one specimen. Test temperature is 270 ~ C. 
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Figure 3 Short term annealing behaviour 
of  2826B measured from the spring-back 
of  coiled ribbons. Data from [6]. 

the equilibrium radius of  curvature was measured. 
Stress relaxation was then plotted on a scale from 
1, corresponding to the initial stress, to 0, corre- 
sponding to complete stress relaxation or zero 
spring-back. These investigators reported that they 
tried unsuccessfully to deduce activation energies 
from the data, or to fit the curves to conventional 
kinetic equations 

In the following section we will analyse their 
data and show that they can be accounted for by 
an Eyring type flow. 

3. Analysis 
The task at hand is to evaluate the time dependent 
stress distribution in the ribbon, as progressive 
relaxation changes the initial linear elastic stress 
distribution introduced by coiling at the time 
t = 0. Out of  the many models proposed for re- 
laxation, two flow laws were investigated in detail 

in this analysis. The respective laws were an Eyring 
activated state model: 

= eo exp(--AH/kT)sinh(v*o/kT)  (1) 

and a power law of  the form: 

= eo exp (-- AH/kT)(o/oo) n (2) 

If the stress distribution o(z, t) is known, the 
stress distribution at the time t + At,  is given by 

(;(z, t + At) = o(z, t ) - - s  4(z, t )"  At  (3) 

where s is the elastic modulus (Young's modulus). 
For At  -+ 0, one obtains with flow laws 1 and 2. 

ao 
- -  = - -2E~o exp (AH/kT) sinh (v*o/kT) (4) 
at  

and 
30 

- s (o/(7o)n exp (-- AH/kT) (5) 
at  

Figure 4 Long term annealing behaviour 
of  2826B measured from the spring- 
back of  coiled ribbons. Data from [6]. 
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b:igure 5 Long term annealing behaviour 
of  2826 measured from the spring-back 
of coiled ribbons, Data from [6]. 

The boundary condition is that for t = 0 the stress 
distribution is linear, i.e. 

o(z, O) = (2z/d)oo 

where z is the coordinate perpendicular to the 
plane of the ribbon starting at the neutral axis, d 
the thickness of the ribbon and oo the elastic 
surface stress at t = 0 .  The general solution of 
Equation 4 is given by. 

o kT l + f ( z ) f ( t )  (6) 
Oo v* o----o In 1 - - f ( z ) f ( t )  

where 

f ( t )  = exp [--E~o exp (-- AH/kT)v*/kT] 

and 

f (z )  = exp [o(z, O)v*/kT] -- 1 
exp [o(z, O)v* /kT] + 1 

With the help of hyperbolic functions Equation 
can be concisely as: 

(O/Oo) = (kT/v* o0) 2 arctanh { tanh [o (z, O)/2kT] 

exp [-- 2E~o exp (-- AH/kT)v*/kT] } (7) 

The solution for power law creep is simpler and 
given by: 

(O/Oo) = [ 1  /:'e0 expo~(--AH/kT)(n--lo(z, 0) 1-" )t]  1/(,-n) 

(8) 
These equations have been evaluated with the aid 
of a PDP 12 computer and Figs. 6 and 2 show 
calculated stress distributions in coiled ribbons at 
various times for the two flow laws. The values 
chosen for the flow parameters, v* = 400 A 3 and 
n = 13 are typical for what one obtains from an 
analysis of experimental data. The general be- 
haviour in Figs. 6 and 7 is quite similar except at 

1.0 

Figure 6 Calculated time dependent stress 
distribution in the ribbon, measured from 
the neutral axis. The calculation assumes 
that transient creep follows a hyperbolic 
flow law with v * = 400 A 3 . 
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Figure 7 Calculated time dependent 
stress distribution in the ribbon meas- 
ured from the neutral axis. The catcu- 
Iat~on assumes that transient creep 
follows a power law with rt = 13. 
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low stresses where the power law gives a much 
slower stress relief with time. This behaviour 
generates, as we will see, a " ta i l"  in the time 

dependent moment  which is characteristic for 
power law creep. 

The stress distributions 7 and 8 can be used to 
calculate the time dependent moments  which are 
directly related to the observed radii of  curvature: 

f al~ I Ca/2 
M(t)/M(to) =~0 o(z, t)zdz / J o  o(z, 0)zdz 

(9) 

This integration was carried out numerically on a 
PDP 12 computer ,  except for the case n = 4 which 
can be integrated easily in closed form, yielding: 

M(t)/M(to) = (3/2r [(1 + r --11 (10) 

with 

r = [3E~o exp ( - -  AH/kT)] �9 [t/ao] 

oo is given by tile geometry.  The other parameters 
i.e eo, AH, and v* or, alternatively n, which enter 
Equation 9 were varied in an a t tempt  to match 

/ /  
/ 

/ 
/ 

l l f=t ,  

t= t  3 

Z 

Figure 8 Approximation used for the closed solution of 
Equation 11 for M(t)/M(O). 

the experimental  data. In the initial stage of  
parameter fitting, we found it convenient to ap- 
proximate the actual stress distribution with two 
linear sections (see Fig. 8). The moment  is then 
simply given by:  

M(t)/Mo = (1 .5 -o (d /2 ,  t) - - (0 .5"  o(d, t) 3) 

(l l)  
where a(d/2, t) is given by Eqaations 7 and 8 
respectively. The approximation is fairly accurate 
even for moderate stress dependence (n = 4, see 
Figs. 9 and 10) and becomes quite accurate at 
higher stress dependences (n '=  13) where the 
deviations between the actual and the approximate 

stress dependence become small. 

4. Results 
Comparisons between the results of  the calcu- 
lations and the experimental data are shown in 
Figs. 9 to [4. 

It was found that the stress relief in coiled 
ribbons could not be described with a power type 
flow law. Figs 9 and 10 show the best fit obtained 
for n = 4; i.e. the flow law which describes the 
steady state or plastic deformation part of  the 
stress relaxation curve of  Fig. 1. The calculated 
curves fall faster with the time than experimentally 
observed, indicating the stress relaxation in coiled 
ribbons is not caused by plastic flow. Treating n 
as an adjustable parameter did not improve the fit. 
A typical result is shown in Fig. 11. The choice of  
n = t3  generates a good *'it for the 150~ an- 
nealing data, but fails to represent the slope of  the 
experimental data at other annealing temperatures.  
In addition one finds that the shift of  the annealing 
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Figure 9 Stress relief in coiled ribbons, 
assuming a power law with n = 4 for 
transient creep. Solid lines are calculated, 
using the approximation indicated in Fig. 
8. Dashed lines connect experimental 
results. 

Figure 10 Stress relief in coiled ribbons, 
assuming a power law with n = 4  for 
transient creep. Solid lines are calculated 
numerically. Dashed lines connect ex- 
perimental results. 
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Fig. 12 shows that  the long te rm (0.1 < t <  

1 0 0 0 h )  annealing o f  coiled 2826B ribbons can be 

ma tched  successfully wi th  such a f low law. The 

parameters  entering the  calculat ion were ~o = 

9 •  101~h-1 ;  2 x H = 2 . 4 6 e V  ( 5 6 . 6 k c a l m o l - 1 ) ;  

and v* = 400 A 3 . The accuracy wi th  which these 

parameters  can be de te rmined  is about  10% in the 
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Figure 11 Stress relief in coiled ribbons, 
assuming a power law with n = 13 for 
transient creep. Solid lines are calculated 
numerically. Dashed lines connect ex- 
perimental results. 



I 0 1  I I 

0 9 ~ .  282_6 B 

o7 _ ~ 1 7 6  2 06 _ 
. . .  0 5  

04' " " -"  200~ 

0 3  
! - � 9 ~ 225 ~ 

01 ! " .~.  

:2,: 1.0 I 0 0  I 0 0  

I (h) 

IOCK) 

Figure 12 Stress relief in coiled ribbons, 
assuming a hyperbolic flow law with 
v* : 4 0 0 A  3 , A H =  2.46 eV, eo - 9  X 
l01~ for transient creep. Long term 
behaviour. Solid lines are calculated 
numerically. Dashed lines connect 
experimental results. 

case of  t0 and 5% or better in the case of  A H a n d  

v*. Besides a good overall matching, the calculated 
curves reproduce previously unnoticed trends in 
the experimental  data such as a slight negative 
curvature of  the annealing curves at lower an- 
nealing temperatures.  The slight deviation in the 
posit ion (but not the slope) of  the 250~ 
isotherm is probably a real effect and will be 
discussed later. 

The predictions for the short term annealing 
behaviour o f  2826B, using the same set of  
parameters, is shown in Fig. 13. The good agree- 
ment between theory and experiment indicates 
that the same process that controls the long term 
annealing behaviour also controls the short term 
annealing behaviour down to - 7 r a i n ,  i.e. the 
shortest annealing times studied. 

Next, we present the results obtained on 2826. 
Fig. 14 shows that very good fits can be obtained 
for T =  150 and 200 ~ C, but that for T = 225 and 

T =  250~ deviations set ill at longer annealing 
times. There are not enough experimental data 
to fix the onset of  these deviations reliably for 
T =  225~ At 250~ the deviations set in 
somewhere between 5.6h (the last data point 
fitted by the theoretical prediction) and 45 h (the 

first data point to show an unambiguous deviation). 
The direction of  the deviations are towards larger 
times; i.e. annealing proceeds slower than 
predicted. The values entered for 2826 were io = 
6 x  1019; A H = 2 . 4 1 4 e V  (55.6kcal) ;  and v * =  
3 6 0 A  3 . 

B. Discussion 
The deviations observed in 2826 annealed for long 
times at high temperatures are easily understood 
with the aid of  Fig. 1 which shows that after 
several hours time, transient creep is replaced by 
steady state creep (the exact time at which this 
transition occurs is stress dependent and for this 
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Figure 13 Stress relief in coiled ribbons, 
assuming a hyperbolic flow law with v * = 
400A 3, ~H = 2.46eV, eo = 9 x 101~ for 
transient creep. Short term behaviour. 
Solid lines are calculated numerically. 
Dashed lines connect experimental results. 
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Figure 14 Stress reliefin coiled ribbons, 
assuming a hyperbolic flow law with 
v* = 3 6 0 A  3, AH = 2.41eV, e0 = 6 X 
1019 for transient  creep. Long term 
behaviour. Solid lines are calculated 
numerically.  Dashed lines connect  
exper imental  results. 

reason the two sets of  data can not be compared 
directly). Extrapolation of  the transient creep 
equation to low stress levels results in an over- 
estimate of the creep rate which accounts for the 
observed deviations. It would be desirable to have 
more accurate stress relaxation data on coiled 
ribbons at high temperatures and long annealing 
times to confirm this interpretation by a direct 
analysis of  the experimental data along the lines 
of  Equation 7. 

The results on both plastic or steady state and 
the transient or anelastic creep in Fe -Ni  based 
metallic glasses are somewhat surprising. In the 
plastic range, the very high precision of  the stress 
relaxation data allows an experimental discrimi- 
nation between a power law description and a 
hyperbolic flow model. Such an analysis shows 
that a power law with n ~ 4 fits the experimental 
data within the small experimental errors whereas 
a hyperbolic fit results in small but systematic 
deviations just outside the experimental scatter. 
(If one nevertheless analyses such a fit one finds 
v* for steady state creep of  the order of  an atomic 
volume which agrees with the observation on 
Pd-Si  based glasses). The stress exponent of  ~ 4 ,  
is unusual in view of  the results on both Pd-Si  
based glasses (n = 1.6) and Ni -P  (n = 1). It also 
does not agree with the prediction of the free 
volume theory which predicts n = 1 [8]. Dis- 
location models, of course, can easily account for 
the observed steady state creep exponent. 

In the transient or anelastic deformation, con- 
siderable rearrangement must be involved on an 
atomic scale, as indicated by the large activation 
volume ( ~ 2 0  atomic volumes). The good 
matching of  the calculated and experimental 
slopes at all temperatures indicate that v* does 
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not depend on temperature in the temperature 
range investigated. 

The activation energy for transient creep 
of  ~ 2.4 eV appears high compared to the reported 
activation energy for steady state creep in Fe -Ni  
base alloys ( Q - - 0 . 3 5  eV in Ni-P) ,  but matches, 
as is to be expected, those measured for internal 
friction (2.2 to 2.6eV). The deviation between 
calculation and experiment observed at 250 ~ C in 
2826 B (but not in 2826) could indicate a shift to 
higher activation energies as T approaches Tg. Such 
shifts are commonly observed in polymers if 
T >  T g - - 3 0  ~ C. It is conceivable that the large 
structural instability of  metallic glasses, relative 
to polymers, gives rise to such effects at tempera- 
tures which are in the order of  T g -  100 ~ C. To 
settle this question conclusively, data at higher 
annealing temperatures are needed. At the 
moment,  the only activation energy available for 
the high temperature behaviour of  2826 is the 
activation energy of crystallization (3.9 eV [9] at 
400 ~ C). 

The activation energy for transient creep of  
2826B is about 0.05 eV higher than that of  2826, 
a difference which is likely within experimental 
error. The trend, however, follows the observation 
on the activation energies for crystallization which 
increases with the number of  atomic species in the 
alloy [9]. 

By replotting the transient portion of Fig. 1 in 
a suitable coordinate system, one can show in an 
independent way that the anetastic relaxation 
follows roughly a hyperbolic flow law with a v* of 
about 400 A 3 . 

The maximum, initial stress levels in the coiled 
ribbons investigated here are only about 1/3 of 
the initial stress levels in the tensile relaxation 



specimen of Fig. 1 so that a direct comparison of 

the relaxation behaviour cannot be carried out. 
This is illustrated by the pre-exponential factor 

in the transient creep equation which depends on 

the initial loading in the specimen. The reasons for 

this can be seen from Fig. 1 which shows relax- 
ation of 2826 in a tensile arrangement at four 

different load levels. The transients are quite 

similar, i.e. relaxation follows the same basic flow 

law. However, the stress relaxation at a lower load 

level does not fall on the extension of stress relax- 

ation initiated at a higher stress level. Rather the 
translation at different load levels occurs along a 

line which approximately parallels the steady state 
creep curve. The pre-exponential factor eo there- 
fore changes with stress in an approximately 
power-like fashion, with a stress exponent of 4 

if o is normalized relative to o0. 

6. Summary 
The stress relaxation process in coiled ribbons of 
F e - N i  based metallic glasses has been analysed. 

It is found that the stress relaxation is almost 

entirely due to transient, non-steady state, de- 
formation which follows a hyperbolic flow law. 

The activation energies are 2.41 eV for 2826 and 
2.46eV for 2826 B. The activation volumes are 
360 A 3 in 2826 and 400 A 3 in 2826 B. 

Steady state creep is only reached after very 

long anneals at high temperatures and at stress 

levels of 10% or less of the initial stress level. 
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